Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Brain Commun ; 6(2): fcae066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482376
2.
Artículo en Inglés | MEDLINE | ID: mdl-37952692

RESUMEN

BACKGROUND: The basal ganglia are strongly connected to the primary motor cortex (M1) and play a crucial role in movement control. Interestingly, several disorders showing abnormal neurotransmitter levels in basal ganglia also present concomitant anomalies in intracortical function within M1. OBJECTIVE/HYPOTHESIS: The main aim of this study was to clarify the relationship between neurotransmitter content in the basal ganglia and intracortical function at M1 in healthy individuals. We hypothesized that neurotransmitter content of the basal ganglia would be significant predictors of M1 intracortical function. METHODS: We combined magnetic resonance spectroscopy (MRS) and transcranial magnetic stimulation (TMS) to test this hypothesis in 20 healthy adults. An extensive TMS battery probing common measures of intracortical, and corticospinal excitability was administered, and GABA and glutamate-glutamine levels were assessed from voxels placed over the basal ganglia and the occipital cortex (control region). RESULTS: Regression models using metabolite concentration as predictor and TMS metrics as outcome measures showed that glutamate level in the basal ganglia significantly predicted short interval intracortical inhibition (SICI) and intracortical facilitation (ICF), while GABA content did not. No model using metabolite measures from the occipital control voxel was significant. CONCLUSIONS: Taken together, these results converge with those obtained in clinical populations and suggest that intracortical circuits in human M1 are associated with the neurotransmitter content of connected but distal subcortical structures crucial for motor function.


Asunto(s)
Corteza Motora , Adulto , Humanos , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Inhibición Neural/fisiología , Potenciales Evocados Motores/fisiología , Ácido Glutámico/metabolismo , Estimulación Magnética Transcraneal/métodos , Ganglios Basales/diagnóstico por imagen , Ácido gamma-Aminobutírico/metabolismo
3.
Neurology ; 101(20): e1970-e1978, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37758482

RESUMEN

BACKGROUND AND OBJECTIVES: Rates of cerebrovascular disease increase after menopause, which is often attributed to the absence of hormones. It remains unknown whether the cumulative exposure to hormones across a female person's premenopausal life extends the window of cerebrovascular protection to the postmenopausal period. To investigate this, we examined the relationship between lifetime hormone exposure (LHE) and cerebral small vessel disease in more than 9,000 postmenopausal women in the UK-Biobank. METHODS: The cohort consisted of women (aged 40-69 years) who attended one of 22 research centers across the United Kingdom between 2006 and 2010. Women were excluded if they were premenopausal when scanned, had missing reproductive history data, self-reported neurologic disorders, brain cancer, cerebral vascular incidents, head or neurologic injury, and nervous system infection. Endogenous LHE (LHEEndo) was estimated by summing the number of years pregnant (LHEParity) with the duration of the reproductive period (LHECycle = age menopause - age menarche). Exogenous LHE (LHEExo) was estimated by summing the number of years on oral contraceptives and hormone replacement therapy. Cerebral small vessel disease was determined by estimating white matter hyperintensity volume (WMHV) from T2-fluid-attenuated inversion recovery brain MRI (acquired between 2014 and 2021), normalized to intracranial volume and log-transformed. Multiple linear regressions were used to assess the relationship between LHEEndo on WMHV adjusted for age, cardiovascular risk factors, sociodemographics, and LHEExo. RESULTS: A total of 9,163 postmenopausal women (age 64.21 ± 6.81 years) were retained for analysis. Average LHEEndo was 39.77 ± 3.59 years. Women with higher LHEEndo showed smaller WMHV (adj-R 2 = 0.307, LHEEndo ß = -0.007 [-0.012 to -0.002], p < 0.01). LHEParity and LHECycle were independent contributors to WMHV (adj-R 2 = 0.308, p << 0.001; LHEParity ß = -0.022 [-0.042 to -0.002], p < 0.05; LHECycle ß = -0.006 [-0.011 to -0.001], p < 0.05). LHEExo was not significantly related to WMHV (LHEExo ß = 0.001 [-0.001 to 0.002], p > 0.05). DISCUSSION: Women with more prolonged exposure to endogenous hormones show relatively smaller burden of cerebral small vessel disease independent of the history of oral contraceptive use or hormone replacement therapy. Our results highlight the critical role endogenous hormones play in female brain health and provide real-world evidence of the protective effects premenopausal endogenous hormone exposure plays on postmenopausal cerebrovascular health.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Posmenopausia , Embarazo , Humanos , Femenino , Factores de Riesgo , Bancos de Muestras Biológicas , Menopausia , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Hormonas
4.
Matern Child Health J ; 27(10): 1765-1773, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37296332

RESUMEN

OBJECTIVE: To examine the associations between exposure to gestational diabetes mellitus (GDM) and maternal glycemic markers during pregnancy and offspring behaviors at 3 and 5 years. We hypothesized that exposure to maternal hyperglycemia would be associated with more behavioral problems in offspring. METHODS: We included 548 mother-child pairs from the prospective pre-birth Gen3G cohort (Canada). Glycemic markers were measured during a 75 g oral glucose tolerance test (OGTT) in the second trimester of pregnancy. Based on OGTT, we classified 59 women (10.8%) as having GDM according to international diagnostic criteria. Mothers reported offspring behavior using the Strengths and Difficulties Questionnaire (SDQ) at 3 and 5 years, and the Child Behavior Checklist (CBCL) at 5 years. We used linear mixed models and multivariate regression to assess the associations between GDM or glycemic markers and children's behavior, adjusted for child sex and age, and maternal demographic factors, body mass index and family history of diabetes. RESULTS: Exposure to GDM was associated with higher SDQ externalizing scores at 3 and 5 years [B = 1.12, 95% CI (0.14, 2.10)] in fully adjusted linear mixed models. These results were supported by the CBCL at 5 years. Higher levels of maternal glucose at 1 h and 2 h during OGTT were associated with greater SDQ externalizing scores. Fasting glucose levels were not associated with child behavior scores. We did not observe associations between glycemic markers and internalizing behaviors. CONCLUSIONS: Exposure to higher levels of maternal glycemia during pregnancy was associated with more externalizing behaviors in children at 3 and 5 years.


What is already known on this subject? Prenatal exposure to gestational diabetes mellitus (GDM) has been linked to a higher risk of long-term consequences in offspring including metabolic problems and cognitive difficulties. However, prior studies examining associations between GDM and behavior in children reported mixed results. What this study adds? We reported associations between exposure to maternal GDM and post-OGTT hyperglycemia during pregnancy and greater levels of externalizing behaviors in children at 3 and 5 years of age. Our results underscore the importance of early detection of behavioral problems in children.


Asunto(s)
Diabetes Gestacional , Hiperglucemia , Embarazo , Humanos , Femenino , Diabetes Gestacional/epidemiología , Estudios Prospectivos , Prueba de Tolerancia a la Glucosa , Glucosa , Hiperglucemia/epidemiología
6.
J Neurosci ; 43(28): 5264-5275, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37339875

RESUMEN

Although premovement beta-band event-related desynchronization (ß-ERD; 13-30 Hz) from sensorimotor regions is modulated by movement speed, current evidence does not support a strict monotonic association between the two. Given that ß-ERD is thought to increase information encoding capacity, we tested the hypothesis that it might be related to the expected neurocomputational cost of movement, here referred to as action cost. Critically, action cost is greater both for slow and fast movements compared with a medium or "preferred" speed. Thirty-one right-handed participants performed a speed-controlled reaching task while recording their EEG. Results revealed potent modulations of beta power as a function of speed, with ß-ERD being significantly greater both for movements performed at high and low speeds compared with medium speed. Interestingly, medium-speed movements were more often chosen by participants than low-speed and high-speed movements, suggesting that they were evaluated as less costly. In line with this, modeling of action cost revealed a pattern of modulation across speed conditions that strikingly resembled the one found for ß-ERD. Indeed, linear mixed models showed that estimated action cost predicted variations of ß-ERD significantly better than speed. This relationship with action cost was specific to beta power, as it was not found when averaging activity in the mu band (8-12 Hz) and gamma band (31-49 Hz) bands. These results demonstrate that increasing ß-ERD may not merely speed up movements, but instead facilitate the preparation of high-speed and low-speed movements through the allocation of additional neural resources, thereby enabling flexible motor control.SIGNIFICANCE STATEMENT Heightened beta activity has been associated with movement slowing in Parkinson's disease, and modulations of beta activity are commonly used to decode movement parameters in brain-computer interfaces. Here we show that premovement beta activity is better explained by the neurocomputational cost of the action rather than its speed. Instead of being interpreted as a mere reflection of changes in movement speed, premovement changes in beta activity might therefore be used to infer the amount of neural resources that are allocated for motor planning.


Asunto(s)
Motivación , Corteza Motora , Humanos , Movimiento , Mano , Ritmo beta , Electroencefalografía , Sincronización Cortical
7.
Cereb Cortex ; 33(11): 7061-7075, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36749004

RESUMEN

Paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are non-invasive brain stimulation methods that are used to modulate cortical excitability. Whether one technique is superior to the others in achieving this outcome and whether individuals that respond to one intervention are more likely to respond to another remains largely unknown. In the present study, the neurophysiological aftereffects of three excitatory neurostimulation protocols were measured with transcranial magnetic stimulation (TMS). Twenty minutes of PAS at an ISI of 25 ms, anodal tDCS, 20-Hz tACS, and Sham stimulation were administered to 31 healthy adults in a repeated measures design. Compared with Sham, none of the stimulation protocols significantly modulated corticospinal excitability (input/ouput curve and slope, TMS stimulator intensity required to elicit MEPs of 1-mV amplitude) or intracortical excitability (short- and long-interval intracortical inhibition, intracortical facilitation, cortical silent period). Sham-corrected responder analysis estimates showed that an average of 41 (PAS), 39 (tDCS), and 39% (tACS) of participants responded to the interventions with an increase in corticospinal excitability. The present data show that three stimulation protocols believed to increase cortical excitability are associated with highly heterogenous and variable aftereffects that may explain a lack of significant group effects.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Progresión de la Enfermedad , Electrodos , Potenciales Evocados Motores , Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos
8.
Orphanet J Rare Dis ; 18(1): 11, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36639812

RESUMEN

BACKGROUND: Mutations in the GATOR1 complex genes, DEPDC5 and NPRL3, play a major role in the development of lesional and non-lesional focal epilepsy through increased mTORC1 signalling. We aimed to assess the effects of mTORC1 hyperactivation on GABAergic inhibitory circuits, in 3 and 5 individuals carrying DEPDC5 and NPRL3 mutations respectively using a multimodal approach including transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy (MRS), and electroencephalography (EEG). RESULTS: Inhibitory functions probed by TMS and MRS showed no effect of mutations on cortical GABAergic receptor-mediated inhibition and GABA concentration, in both cortical and subcortical regions. However, stronger EEG theta oscillations and stronger and more synchronous gamma oscillations were observed in DEPDC5 and NPRL3 mutations carriers. CONCLUSIONS: These results suggest that DEPDC5 and NPRL3-related epileptic mTORopathies may not directly modulate GABAergic functions but are nonetheless characterized by a stronger neural entrainment that may be reflective of a cortical hyperexcitability mediated by increased mTORC1 signaling.


Asunto(s)
Epilepsia , Humanos , Epilepsia/genética , Proteínas Activadoras de GTPasa/genética , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mutación
9.
Ultrasound Med Biol ; 49(3): 901-907, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36517383

RESUMEN

Development, optimization and validation of transcranial ultrasound methods require the use of fresh human or animal skulls. However, to avoid fresh skull degradation over time, fixation methods are required for conservation, such as formaldehyde buffer solution. This method allows for conservation of the skull properties over a relatively long period, but requires specific conditioning (de-gassing) and storage conditions, such that its practical use is limited. Plastination appears to be a unique solution for the preservation and transportation of body parts without constraints. However, the influence of this conservation process has yet to be characterized with respect to ultrasound transmission to verify that the acoustic and mechanical properties of the skulls are not altered by the plastination process. The objective of the study described here was to quantify the effect of plastination on ultrasound transmission through the temporal and parietal areas of the human skull between 200 kHz and 2 MHz. To achieve this, transmission measurements were performed on three different skulls and four areas before and after plastination. It was found that the plastination process results in a transmission loss of 5 dB. Moreover, results indicate that the plastination process does not induce any phase shift in the transmitted signal, validating the proper use of plastinated skulls for in vitro measurements and development of new transcranial ultrasound methods.


Asunto(s)
Plastinación , Animales , Humanos , Plastinación/métodos , Cráneo/diagnóstico por imagen , Ultrasonografía , Cabeza , Acústica
10.
Cereb Cortex ; 33(5): 1895-1912, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35535719

RESUMEN

Structural and functional magnetic resonance imaging (MRI) studies have suggested a neuroanatomical basis that may underly attention-deficit-hyperactivity disorder (ADHD), but the anatomical ground truth remains unknown. In addition, the role of the white matter (WM) microstructure related to attention and impulsivity in a general pediatric population is still not well understood. Using a state-of-the-art structural connectivity pipeline based on the Brainnetome atlas extracting WM connections and its subsections, we applied dimensionality reduction techniques to obtain biologically interpretable WM measures. We selected the top 10 connections-of-interests (located in frontal, parietal, occipital, and basal ganglia regions) with robust anatomical and statistical criteria. We correlated WM measures with psychometric test metrics (Conner's Continuous Performance Test 3) in 171 children (27 Dx ADHD, 3Dx ASD, 9-13 years old) from the population-based GESTation and Environment cohort. We found that children with lower microstructural complexity and lower axonal density show a higher impulsive behavior on these connections. When segmenting each connection in subsections, we report WM alterations localized in one or both endpoints reflecting a specific localization of WM alterations along each connection. These results provide new insight in understanding the neurophysiology of attention and impulsivity in a general population.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Humanos , Niño , Adolescente , Sustancia Blanca/patología , Conducta Impulsiva , Imagen por Resonancia Magnética , Ganglios Basales , Atención/fisiología , Encéfalo
11.
Neurobiol Dis ; 174: 105881, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36202290

RESUMEN

Fragile-X syndrome (FXS) and Neurofibromatosis of type 1 (NF-1) are two monogenic disorders sharing neurobehavioral symptoms and pathophysiological mechanisms. Namely, preclinical models of both conditions show overactivity of the mTOR signaling pathway as well as GABAergic alterations. However, despite its potential clinical relevance for these disorders, the GABAergic system has not been systematically studied in humans. In the present study, we used an extensive transcranial magnetic stimulation (TMS) assessment battery in combination with magnetic resonance spectroscopy (MRS) to provide a comprehensive picture of the main inhibitory neurotransmitter system in patients with FXS and NF1. Forty-three participants took part in the TMS session (15 FXS, 10 NF1, 18 controls) and 36 in the MRS session (11 FXS, 14 NF1, 11 controls). Results show that, in comparison to healthy control participants, individuals with FXS and NF1 display lower GABA concentration levels as measured with MRS. TMS result show that FXS patients present increased GABAB-mediated inhibition compared to controls and NF1 patients, and that GABAA-mediated intracortical inhibition was associated with increased excitability specifically in the FXS groups. In line with previous reports, correlational analyses between MRS and TMS measures did not show significant relationships between GABA-related metrics, but several TMS measures correlated with glutamate+glutamine (Glx) levels assessed with MRS. Overall, these results suggest a partial overlap in neurophysiological alterations involving the GABA system in NF1 and FXS, and support the hypothesis that MRS and TMS assess different aspects of the neurotransmitter systems.


Asunto(s)
Síndrome del Cromosoma X Frágil , Corteza Motora , Neurofibromatosis 1 , Humanos , Inhibición Neural/fisiología , Ácido gamma-Aminobutírico/metabolismo , Estimulación Magnética Transcraneal , Neurofibromatosis 1/metabolismo
12.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142726

RESUMEN

Fragile X Syndrome (FXS) is the most prevalent monogenic cause of Autism Spectrum Disorders (ASDs). Despite a common genetic etiology, the affected individuals display heterogenous metabolic abnormalities including hypocholesterolemia. Although changes in the metabolism of fatty acids (FAs) have been reported in various neuropsychiatric disorders, it has not been explored in humans with FXS. In this study, we investigated the FA profiles of two different groups: (1) an Argentinian group, including FXS individuals and age- and sex-matched controls, and (2) a French-Canadian group, including FXS individuals and their age- and sex-matched controls. Since phospholipid FAs are an indicator of medium-term diet and endogenous metabolism, we quantified the FA profile in plasma phospholipids using gas chromatography. Our results showed significantly lower levels in various plasma FAs including saturated, monosaturated, ω-6 polyunsaturated, and ω-3 polyunsaturated FAs in FXS individuals compared to the controls. A decrease in the EPA/ALA (eicosapentaenoic acid/alpha linoleic acid) ratio and an increase in the DPA/EPA (docosapentaenoic acid/eicosapentaenoic acid) ratio suggest an alteration associated with desaturase and elongase activity, respectively. We conclude that FXS individuals present an abnormal profile of FAs, specifically FAs belonging to the ω-3 family, that might open new avenues of treatment to improve core symptoms of the disorder.


Asunto(s)
Ácidos Grasos Omega-3 , Síndrome del Cromosoma X Frágil , Canadá , Ácido Eicosapentaenoico/metabolismo , Ácido Graso Desaturasas/genética , Elongasas de Ácidos Grasos , Ácidos Grasos , Humanos , Ácido Linoleico , Fosfolípidos
13.
Sci Rep ; 12(1): 15386, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100610

RESUMEN

High plasma matrix metalloproteases-9 (MMP-9) levels have been reported in Fragile X Syndrome in a limited number of animal and human studies. Since the results obtained are method-dependent and not directly comparable, the clinical utility of MMP-9 measurement in FXS remains unclear. This study aimed to compare quantitative gel zymography and ELISA and to determine which method better discriminates abnormal MMP-9 levels of individuals with FXS from healthy controls and correlates with the clinical profile. The active and total forms of MMP-9 were quantified respectively, by gel zymography and ELISA in a cohort of FXS (n = 23) and healthy controls (n = 20). The clinical profile was assessed for the FXS group using the Aberrant Behavior Checklist FXS adapted version (ABC-CFX), Adaptive Behavior Assessment System (ABAS), Social Communication Questionnaire (SCQ), and Anxiety Depression and Mood Scale questionnaires. Method comparison showed a disagreement between gel zymography and ELISA with a constant error of - 0.18 [95% CI: - 0.35 to - 0.02] and a proportional error of 2.31 [95% CI: 1.53 to 3.24]. Plasma level of MMP-9 active form was significantly higher in FXS (n = 12) as compared to their age-sex and BMI matched controls (n = 12) (p = 0.039) and correlated with ABC-CFX (rs = 0.60; p = 0.039) and ADAMS (rs = 0.57; p = 0.043) scores. As compared to the plasma total form, the plasma MMP-9 active form better enables the discrimination of individuals with FXS from controls and correlates with the clinical profile. Our results highlight the importance of choosing the appropriate method to quantify plasma MMP-9 in future FXS clinical studies.


Asunto(s)
Síndrome del Cromosoma X Frágil , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Lista de Verificación , Comunicación , Humanos , Encuestas y Cuestionarios
14.
Eur J Neurosci ; 56(5): 4600-4618, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35841189

RESUMEN

The neurochemical mechanisms underlying motor memory consolidation remain largely unknown. Based on converging work showing that ethyl alcohol retrogradely enhances declarative memory consolidation, this work tested the hypothesis that post-learning alcohol ingestion would enhance motor memory consolidation. In a within-subject and fully counterbalanced design, participants (n = 24; 12M; 12F) adapted to a gradually introduced visual deviation and ingested, immediately after adaptation, a placebo (PBO), a medium (MED) or high (HIGH) dose of alcohol. The alcohol doses were bodyweight- and gender-controlled to yield peak breath alcohol concentrations of 0.00% in the PBO, ~0.05% in the MED and ~0.095% in the HIGH condition. Retention was evaluated 24 h later through reach aftereffects when participants were sober. The results revealed that retention levels were neither significantly nor meaningfully different in both the MED and HIGH conditions as compared to PBO (all absolute Cohen's dz values < ~0.2; small to negligible effects), indicating that post-learning alcohol ingestion did not alter motor memory consolidation. Given alcohol's known pharmacological GABAergic agonist and NMDA antagonist properties, one possibility is that these neurochemical mechanisms do not decisively contribute to motor memory consolidation. As converging work demonstrated alcohol's retrograde enhancement of declarative memory, the present results suggest that distinct neurochemical mechanisms underlie declarative and motor memory consolidation. Elucidating the neurochemical mechanisms underlying the consolidation of different memory systems may yield insights into the effects of over-the-counter drugs on everyday learning and memory but also inform the development of pharmacological interventions seeking to alter human memory consolidation.


Asunto(s)
Consolidación de la Memoria , Consumo de Bebidas Alcohólicas , Ingestión de Alimentos , Etanol/farmacología , Humanos , Aprendizaje , Destreza Motora
15.
Sci Rep ; 12(1): 9115, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650241

RESUMEN

Large-scale neurophysiological markers of action competition have been almost exclusively investigated in the context of instructed choices, hence it remains unclear whether these markers also apply to free choices. This study aimed to compare the specific brain dynamics underlying instructed and free decisions. Electroencephalography (EEG) was recorded while 31 participants performed a target selection task; the choice relied either on stimulus-response mappings (instructed) or on participants' preferences (free). Choice difficulty was increased by introducing distractors in the informative stimulus in instructed choices, and by presenting targets with similar motor costs in free choices. Results revealed that increased decision difficulty was associated with higher reaction times (RTs) in instructed choices and greater choice uncertainty in free choices. Midfrontal EEG theta (4-8 Hz) power increased with difficulty in instructed choices, but not in free choices. Although sensorimotor beta (15-30 Hz) power was correlated with RTs, it was not significantly influenced by choice context or difficulty. These results suggest that midfrontal theta power may specifically increase with difficulty in externally-driven choices, whereas sensorimotor beta power may be predictive of RTs in both externally- and internally-driven choices.


Asunto(s)
Mapeo Encefálico , Electroencefalografía , Libertad , Humanos , Tiempo de Reacción , Incertidumbre
16.
Neuropsychopharmacology ; 47(12): 2101-2110, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35701548

RESUMEN

The ingestion of alcohol yields acute biphasic subjective effects: stimulation before sedation. Despite their predictive relevance to the development of alcohol use disorders (AUD), the neurobiological markers accounting for the biphasic effects of alcohol remain poorly understood in humans. Informed by converging lines of evidence, this study tested the hypothesis that alcohol ingestion acutely increases gamma-aminobutyric acid (GABA)-mediated inhibition, which would positively and negatively predict the feeling of stimulation and sedation, respectively. To do so, healthy participants (n = 20) ingested a single dose of 94% ABV alcohol (males: 1.0 ml/kg; females: 0.85 ml/kg) in a randomized placebo-controlled cross-over design. The alcohol's biphasic effects were assessed with the Brief-Biphasic Alcohol Effects Scale, and non-invasive neurobiological markers were measured with transcranial magnetic stimulation, before and every 30 min (up to 120 min) after the complete ingestion of the beverage. Results showed that acute alcohol ingestion selectively increased the duration of the cortical silent period (CSP) as compared to placebo, suggesting that alcohol increases non-specific GABAergic inhibition. Importantly, CSP duration positively and negatively predicted increases in the feeling of stimulation and sedation, respectively, suggesting that stimulation emerges as GABAergic inhibition increases and that sedation emerges as GABAergic inhibition returns to baseline values. Overall, these results suggest that modulations of GABAergic inhibition are central to the acute biphasic subjective effects of alcohol, providing a potential preventive target to curb the progression of at-risk individuals to AUD.


Asunto(s)
Alcoholismo , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Estudios Cruzados , Etanol/farmacología , Femenino , Humanos , Inhibición Psicológica , Masculino , Ácido gamma-Aminobutírico
17.
J Autism Dev Disord ; 52(7): 3202-3213, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34318430

RESUMEN

Evidence-based therapeutic options for children with developmental coordination disorder (DCD) are scarce. This work explored the effects of cerebellar anodal transcranial direct current stimulation (atDCS) on three 48 h-apart motor sequence learning and upper limb coordination sessions in children with DCD. The results revealed that, as compared to a Sham intervention (n = 10), cerebellar atDCS (n = 10) did not meaningfully improve execution speed but tended to reduce the number of execution errors during motor sequence learning. However, cerebellar atDCS did neither meaningfully influence offline learning nor upper limb coordination, suggesting that atDCS' effects are circumscribed to its application duration. These results suggest that cerebellar atDCS could have beneficial effects as a complementary therapeutic tool for children with DCD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos de la Destreza Motora , Estimulación Transcraneal de Corriente Directa , Cerebelo , Niño , Método Doble Ciego , Humanos , Trastornos de la Destreza Motora/terapia , Proyectos Piloto , Estimulación Transcraneal de Corriente Directa/métodos
18.
J Autism Dev Disord ; 52(1): 16-27, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33751331

RESUMEN

Previous studies have suggested that girls with Turner syndrome (TS) exhibit symptoms of social anxiety during interactions with others. However, few studies have quantified these behaviors during naturalistic face-to-face social encounters. In this study, we coded observational markers of social anxiety in prepubertal girls with TS and age-matched controls during a 10-min social encounter with an unfamiliar examiner. Results showed that girls with TS exhibited significantly higher levels of gaze avoidance compared to controls. Impairments in social gaze were particularly increased in girls with a maternally retained X chromosome (Xm), suggesting a genomic imprinting effect. These data indicate that social gaze avoidance may be a critical behavioral marker for identifying early social dysfunction in young girls with TS.


Asunto(s)
Trastorno del Espectro Autista , Síndrome de Turner , Ansiedad , Femenino , Impresión Genómica , Humanos , Monosomía , Síndrome de Turner/genética , Cromosoma X
19.
Environ Res ; 206: 112593, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34951987

RESUMEN

BACKGROUND: Prenatal exposure to persistent organic pollutants (POPs), widespread in North America, is associated with increased Attention Deficit/Hyperactivity Disorder (ADHD) symptoms and may be a modifiable risk for ADHD phenotypes. However, the effects of moderate exposure to POPs on task-based inhibitory control performance, related brain function, and ADHD-related symptoms remain unknown, limiting our ability to develop interventions targeting the neural impact of common levels of exposure. OBJECTIVES: The goal of this study was to examine the association between prenatal POP exposure and inhibitory control performance, neural correlates of inhibitory control and ADHD-related symptoms. METHODS: Prospective data was gathered in an observational study of Canadian mother-child dyads, with moderate exposure to POPs, including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), as part of the GESTation and the Environment (GESTE) cohort in Sherbrooke, Quebec, Canada. The sample included 87 eligible children, 46 with maternal plasma samples, functional magnetic resonance imaging (fMRI) data of Simon task performance at 9-11 years, and parental report of clinical symptoms via the Behavioral Assessment System for Children 3 (BASC-3). Simon task performance was probed via drift diffusion modeling, and parameter estimates were related to POP exposure. Simon task-based fMRI data was modeled to examine the difference in incongruent vs congruent trials in regions of interest (ROIs) identified by meta analysis. RESULTS: Of the 46 participants with complete data, 29 were male, and mean age was 10.42 ± 0.55 years. Increased POP exposure was associated with reduced accuracy (e.g. PCB molar sum rate ratio = 0.95; 95% CI [0.90, 0.99]), drift rate (e.g. for PCB molar sum ß = -0.42; 95% CI [-0.77, -0.07]), and task-related brain activity (e.g. in inferior frontal cortex for PCB molar sum ß = -0.35; 95% CI [-0.69, -0.02]), and increased ADHD symptoms (e.g. hyperactivity PCB molar sum ß = 2.35; 95%CI [0.17, 4.53]), supporting the possibility that prenatal exposure to POPs is a modifiable risk for ADHD phenotypes. DISCUSSION: We showed that exposure to POPs is related to task-based changes in neural activity in brain regions important for inhibitory control, suggesting a biological mechanism underlying previously documented associations between POPs and neurobehavioral deficits found in ADHD phenotypes.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Contaminantes Ambientales , Bifenilos Policlorados , Efectos Tardíos de la Exposición Prenatal , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Canadá/epidemiología , Femenino , Humanos , Masculino , Exposición Materna , Relaciones Madre-Hijo , Estudios Observacionales como Asunto , Contaminantes Orgánicos Persistentes , Fenotipo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología , Estudios Prospectivos
20.
Eur J Neurosci ; 55(1): 49-66, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894023

RESUMEN

Anterograde interference emerges when two opposite (B → A) or identical tasks (A → A) are learned in close temporal succession, suggesting that interference cannot be fully accounted for by competing memories. Informed by neurobiological evidence, this work tested the hypothesis that interference depends upon the degree of overlap between the neural networks involved in the learning of two tasks. In a fully within-subject and counterbalanced design, participants (n = 24) took part in two learning sessions where the putative overlap between learning-specific neural networks was behaviourally manipulated across four conditions by modifying reach direction and the effector used during gradual visuomotor adaptation. The results showed that anterograde interference emerged regardless of memory competition-that is, to a similar extent in the B → A and A → A conditions-and along a gradient as a function of the tasks' similarity. Specifically, learning under similar reaching conditions generated more anterograde interference than learning under dissimilar reaching conditions, suggesting that putatively overlapping neural networks are required to generate interference. Overall, these results indicate that competing memories are not the sole contributor to anterograde interference and suggest that overlapping neural networks between two learning sessions are required to trigger interference. One discussed possibility is that initial learning modifies the properties of its neural networks to constrain further plasticity induction and learning capabilities, therefore causing anterograde interference in a network-dependent manner. One implication is that learning-specific neural networks must be maximally dissociated to minimize the interfering influences of previous learning on subsequent learning.


Asunto(s)
Adaptación Fisiológica , Desempeño Psicomotor , Humanos , Aprendizaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...